- Craig, R. K., Castello, P. A., & Keir, H. M. (1975) *Biochem.* J. 145, 233-240.
- Crute, J. J., Wahl, A. F., & Bambara, R. A. (1986) Biochemistry 25, 26-36.
- Foster, K. A., & Collins, J. M. (1985) J. Biol. Chem. 260, 4229-4235.
- Fry, M., & Loeb, L. A. (1986) in Animal Cell DNA Polymerases, CRC Press, Boca Raton, FL.
- Harwell, L., Kappler, J. W., & Marrack, P. (1976) J. Immunol. 116, 1379-1384.
- Keng, P. C., Li, C. K. N., & Wheeler, K. T. (1981) Cell Biophys. 3, 41-56.
- Khan, N. N., & Brown, N. C. (1985) Mol. Cell. Biochem. 68, 169-179.
- Khan, N. N., Wright, G. E., Dudycz, L. W., & Brown, N. C. (1984) Nucleic Acids Res. 12, 3695-3706.
- Khan, N. N., Wright, G. E., Dudycz, L. W., & Brown, N. C. (1985) *Nucleic Acids Res.* 13, 6331-6342.
- Kornberg, A. (1980) DNA Synthesis, W. H. Freeman, San Francisco.
- Krauss, S. W., & Linn, S. (1986) J. Cell. Physiol. 126, 99-106.
- Lee, M. Y. W. T., Tan, C.-K., So, A., & Downey, K. M. (1980) Biochemistry 19, 2096-2101.
- Lee, M. Y. W. T., Tan, C.-K., Downey, K. M., & So, A. G. (1981) Prog. Nucleic Acid Res. Mol. Biol. 26, 83-96.
- Lee, M. Y. W. T., Toomey, N. L., & Wright, G. E. (1985) Nucleic Acids Res. 13, 8623-8630.
- Loeb, L. A., & Kunkel, T. A. (1982) Annu. Rev. Biochem. 51, 429-457.

- Luk, C. K., Keng, P. C., & Sutherland, R. M. (1985) Cancer Res. 45, 1020-1025.
- Miller, M. A., Wang, T. S.-F., & Korn, D. (1987) Biochemistry (in press).
- Mishell, B. S., & Shiigi, S. M. (1980) Selected Method in Immunology 368, W. H. Freeman, San Francisco.
- Pedrali-Noy, G., Spadari, S., Miller-Faures, A., Miller, A. D. A., Kruppa, J., & Koch, G. (1980) Nucleic Acids Res. 8, 377-387.
- Penefsky, H. S. (1971) J. Biol. Chem. 252, 2891-2899.
- Prelich, G., Tan, C.-K., Kostura, M., Mathews, M. B., So, A.
 G., Downey, K. M., & Stillman, B. (1982) *Nature (London)* 326, 517-520.
- Skarnes, W., Bonin, P., & Baril, E. (1986) J. Biol. Chem. 261, 6629-6636.
- Spadari, S., & Weissbach, A. (1974) J. Mol. Biol. 86, 11-20.
 Spanos, A., Sedwick, S. G., Yarranton, S. T., Hubscher, U.,
 & Banks, G. R. (1981) Nucleic Acids Res. 9, 1825-1839.
- Tan, C.-K., Castillo, C., So, A. G., & Downey, K. M. (1986)
 J. Biol. Chem. 261, 12310-12316.
- Tan, E. M. (1982) Adv. Immunol. 33, 167-240.
- Tanaka, S., Hu, S.-Z., Wang, T. S.-F., & Korn, D. (1982) J. Biol. Chem. 257, 8386-8390.
- Thommes, P., Reiter, T., & Knippers, R. (1986) *Biochemistry* 25, 1308-1314.
- Wahl, A. F., Crute, J. J., Sabatino, R. D., Bodner, J. B., Marraccino, R. L., Harwell, L. W., Lord, E. M., & Bambara, R. A. (1986) *Biochemistry 25*, 7821-7827.
- Waqar, M. A., Evans, M. J., & Huberman, J. A. (1978) Nucleic Acids Res. 6, 1933-1946.

The DNA Sequence of the Human β -Globin Region Is Strongly Biased in Favor of Long Strings of Contiguous Purine or Pyrimidine Residues[†]

Michael J. Behe

Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015 Received March 19, 1987; Revised Manuscript Received July 9, 1987

ABSTRACT: The DNA sequence of the human β -globin region, comprising over 67 kilobase pairs, has been analyzed for the occurrence of strings of contiguous purine or pyrimidine residues. Tracts of 10 or more contiguous residues are found 4 times more frequently than would be expected with a random distribution of bases, so that a long string occurs at an average of every 250 base pairs. A survey of six other human gene sequences, totaling 86 kilobase pairs, shows a remarkably similar result. No such overrepresentation of contiguous purine or pyrimidine residues is found in the bacteriophages λ or T7.

It has been known for quite some time that double-stranded synthetic polydeoxynucleotides in which one strand is exclusively purine residues have conformations that are different from DNA in which purines and pyrimidines occur on both strands. The synthetic polymers poly(dA)-poly(dT), poly(dI)-poly(dC), and poly[d(A-I)]-poly[d(T-C)] have been shown to differ from heterogeneous sequence DNA in their X-ray fiber diffraction patterns (Leslie et al., 1980). Poly(dA)-poly(dT) is known to have a helical repeat that is different

from bulk DNA (Peck & Wang, 1981; Rhodes & Klug, 1981), and poly(dG)·poly(dC) is 20-fold less flexible than heterogeneous sequence DNA (Hogan et al., 1983). Neither poly(dA)·poly(dT) nor poly(dG)·poly(dC) is able to form nucleosomal structures when challenged by histones (McGhee & Felsenfeld, 1980), and a short cloned region of (dA·dT)₂₀ was seen to be excluded from the central portion of nucleosomes (Kunkel & Martinson, 1981). The smallest number of contiguous purine residues that is needed for a segment of DNA in a longer strand to acquire a polypurine-like conformation is currently not known but is probably on the order of 10 base pairs or fewer.

It has been speculated that DNA sequences that have the ability to occur in conformations different from the B form,

[†]This work was supported by Grant GM36343 from the National Institutes of Health and Grant DMB-8510719 from the National Science Foundation. M.J.B. is a recipient of Research Career Development Award CA01159 from the National Institutes of Health.

Genbank file designation size of file (bases) description of file HUMHBB 67 256 human β-globin region on chromosome 11 HUMFIXG 38 059 human factor IX gene human α-globin region on chromosome 14	
HUMHBB 67 256 human β-globin region on chromosome 11 HUMFIXG 38 059 human factor IX gene HUMHBA4 12 847 human α-globin region on	
chromosome 11 HUMFIXG 38 059 human factor IX gene HUMHBA4 12 847 human α-globin region on	
HUMFIXG 38 059 human factor IX gene HUMHBA4 12 847 human α-globin region on	
HUMHBA4 12847 human α -globin region on	
chromosome 14	
HUMNGFB 11 594 human β -nerve growth factor get HUMTBB5 8 874 human β -tubulin gene	įe
HUMPOMC 8658 human proopiomelanocortin gene	
HUMRASH 6453 human C-HA-rasl protooncogene	
MUSGKAL1 9433 mouse glandular kallikrein genes	
MUSMHAB3 10 000 mouse MHC class II H2-IA-β g	ene
RABIGKCA 5235 rabbit Ig k gene	
RABUG 3709 rabbit uteroglobin gene	
CHKOVAL 9 206 chicken ovalbumin gene	
CHKY 8 372 chicken Y protein gene	
XENHBBI 2972 X. laevis larval β -1-globin	
XENHBBC 1989 X. laevis major β -globin gene	
DROGART 9623 D. melanogaster Gart gene	
DROHSP7D1 5 066 D. melanogaster heat-shock locus 87C1	
LAMBDA 48 502 bacteriophage λ T7 39 936 bacteriophage T7	

such as Z DNA or cruciforms, may be used by cells in some biological functions (Wang et al., 1979; Lilley, 1980). It has always been implicitly assumed, however, that such sequences would be present as a very small percentage of total genomic DNA. In this paper, however, I report the results of a search of human genomic DNA sequences for occurrences of contiguous purines or pyrimidines ranging from 1 isolated purine (flanked by 2 pyrimidines) to occurrences of greater than 15 in a row. The results show that, for the β -globin region and for 6 other human genes that were surveyed, occurrences of strings of contiguous purine or pyrimidine residues equal to or exceeding 10 bases in length are found at a frequency 4-6 times greater than expected. Since this corresponds to a total of $\sim 5\%$ of the DNA that was examined, with an average of about one string per 170-250 base pairs, these elements may play a basic role in influencing the structure of chromatin in vivo.

MATERIALS AND METHODS

DNA sequences found in the Genbank genetic sequence data bank (Release 40.0, February 1986) were searched by using a microcomputer with commercial sequence analysis programs (International Biotechnologies, Inc.) written by Pustell and Kafatos (1982a,b, 1984). A description of the regions searched, the size of the regions, and the Genbank file designations are shown in Table I. These were selected primarily because they represent the largest files in the Genbank data base for the particular organisms and thus would be expected to give the most reliable statistical information.

Each region was searched for occurrences of the sequences $-Py-(Pu)_n-Py-$ and $-Pu-(Py)_n-Pu-$, with n ranging from 1 to 15, where Py is pyrimidine and Pu is purine. All regions were then searched for occurrence of the sequences $-(Pu)_{16}$ - and $-(Py)_{16}$ -, which yields all strings of 16 or greater. This search strategy leaves no region of the reported sequence unexamined. For the 67 kilobase pair β -globin region, the sequence and start site were recorded for all strings of 10 residues or greater for subsequent analysis and are listed in Table II.

Expected frequencies of -Py-(Pu)_n-Py- for a random distribution of bases were calculated as follows: expected number of occurrences = number of bases in data set \times (fraction of pyrimidines)² \times (fraction of purines)ⁿ. Expected frequencies of -Pu-(Py)_n-Pu- were calculated analogously.

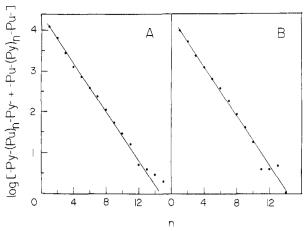


FIGURE 1: Logarithm of the sum of the number of -Py-(Pu)_n-Py- and -Pu-(Py)_n-Pu- sequences versus n, the number of contiguous purine or pyrimidine residues, for the DNA sequence of (A) bacteriophage λ and (B) bacteriophage T7.

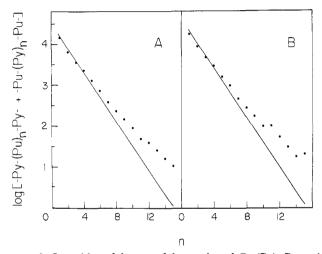


FIGURE 2: Logarithm of the sum of the number of -Py-(Pu)_n-Py- and -Pu-(Py)_n-Pu-sequences versus n, the number of contiguous purine or pyrimidine residues, for the DNA sequence of (A) the human β -globin region and (B) the sum of the six other human gene regions listed in Table I.

RESULTS

The logarithm of the sum of the occurrences of the sequences -Py-(Pu)_n-Py- and -Pu-(Py)_n-Pu- is plotted versus n, the number of contiguous purine or pyrimidine residues, for the DNA sequences of bacteriophage λ and T7 in Figure 1A,B. The lines in the figures are not drawn to fit the data but are the predicted frequencies for the random occurrence of sequences of the types that were searched for. The data fit the predicted line very well, with a small amount of scatter for longer sequences with small expected frequencies of occurrence. A similar plot is shown in Figure 2A for the 67 kilobase pair DNA sequence of the human β -globin region. In this figure, however, the data do not fall along the predicted line but deviate in a positive direction as the length of contiguous purines and pyrimidines becomes greater. To determine if this was a feature peculiar to the β -globin region, six other human genes were analyzed, and the sum of the results is shown in Figure 2B. Again, the observed number of occurrences of long strings of contiguous purines or pyrimidines deviates in a positive direction from that expected for a random distribution of bases. The sum of all the sequences was used in order to provide a large sequence base. However, each individual gene shows the same behavior, albeit with a bit more scatter. Table III shows the expected and observed number of occurrences of strings of 10 or more contiguous purines and pyrimidines

Table II: Sequences of the 269 Strings Consisting of 10 or More Contiguous Purine or Pyrimidine Residues in the β-Globin Region^a

T	able II: Sequences of the 269 St	rings Consisting of	of 10 or More Contiguous Pu	rine or Pyrimidine Re	sidues in the β -Globin Region ^a	
	SEQUENCE STA	RT SITE	SEOUENCE	START SITE	SEQUENCE STA	ART SITE
	ΑΑΑΑΑΑΑΑΑΑΑ	273	AGAAAGGGAGG	47545	TTTCTCCCCTC	29631
	GGGAGGAGGG	851	AAGAAAAAA	48555	TCCCCCTTTTCCT	29947
	AGAGGAAAAGGGG	1374	GAAAAGAAGGAAA	48662	TCTCTCTTCT	30002
	GAGAAGGAAA AAAAAGGAGGA	1595 1724	AAAGAAAGAGG	48813	TTTTCTTTTCCTCC	30783
	GGAGAAGGGG	2968	GAAAAAAAAGA AAGGAAAGGA	49858 50146	TCCCCCTTTTCC TCTTTTTTTCTCTCTCTCTCTT-	31026 31292
	AAGAGAGGAGGGAAGGA	4122	AGAAGGAGAAAA	50313	-TTCTTCTCCCCC	31232
	GAGAGGGAAA	5326	AGAGAGAGAGAGA	50491	CTTTTTCCTT	31914
	GAAAGAGAAG	5408	GAGGGAAGGA	50624	TCTTTTCTTTCCTTTCTT	33016
	AAAAAAAAAAAGAAG	5903	AGAAGAGAAAAAAAAAAA	52313	CCCCTTCCTC	34294
	GAGGGAGAAAAGG GAGAAAGGAGAGAGAGAAAGG	6404 7700	AAAAGAAGGAGGAAG	54305 54861	CCTTTCCCCT	35268
	AAAAAAAAGGAGAAG	8770	GAGGAGAAGA GGAAAGGAAAG	55727	TTCTTTTTTT CCCCCTTCCCT	36105 36422
	GGAAGAGGAAGG	9095	GGGAAAAGAGAAAAG	56543	TTTTTCTTTCC	36628
	AGGAAAAGAAAA	9116	AGAAAGAAAA	57161	TTTCTCTTCCTTCT	37178
	GAGAGGAAAGAAA	9314	AAAGAGGAAG	57323	TTTTTTCTTC	37514
	GGGAGAAAAA	9423	AAAAAAAAGAG	57930	TTCTTTCTTT	37571
	AGAGAGAAGA AAGAAAGGAAA	9814 9927	GGGAAGAGGGAGA	58289	TTTCTTTCTTTCTTTTTTTCCTC	37584
	AGAAAAAAA	10045	GAAAGAGAGGGAGGAAGG- -GAAGAGAGGA	58580	CTTCTTTCTCC CTTTCTTTCTTT	37648 37741
	GGGGAAAAA	10059	AGAAAGAAAAG	59820	TCCTTTTTTTTTT	37754
	GGAGGAAAA	10456	AAGAGAAGGA	59927	TTTTTTTCCTTTT	37954
	AAAGAAAAAA	13531	AAAAAGAAAA	59954	CTTTTTCCTT	38912
	AAGAAGAAGAAA	13628	AGAAAAAGGAAAA	59971	CCCCTTCCCC	39230
	AGAAAAGAGG	13697	AAAAAGAAAA	60450	CCTTTCCCCT	40204
	GGGGGAGGAAAA AGAGAGAGA	13845 14730	GAAAGGAAGAAG	60834	CTCTTTTTTT TTTCTCTTTCCTCCC	41021 41951
	GAGAGAAGGAGGA	14908	AAGGGGAAAAAG GGGAGAAAGG	61076 61099	CCCTTCTCTCT	42266
	AGGAAAGAAAAG	15914	AGAGAAAGAAGAG	61129	TTCTTTTTTTCTTTCTTTCTTT-	42363
	AAGGAGAAGAAAA	16214	AGAGGAAAAAA	61240	-TTTCTCCTC	
	AGAAAAAAA	16751	AAGGAGAAGA	61699	CCCTTCCTTCTTC	42415
	GGGAGAAAAG	17640	AGAGGGAGGG	61999	CTTTCTTTCTTTTT	42515
	AGAAGAGAA AGGAGAAAGAAA	17745 17917	AGGAAGGGGAGAAG	62748	CCTTCTCTTTTT	42685
	AAAAAAAAAAAAAGAAAGAAAGAA-	18187	AAAAAGGGAA GAAGAAGGAAAAA	63831 64268	TTTTTTTTTCTT TCTTTTTCCC	42836 42915
	-AAGAAAAAGAAAAAGAAAAA	10107	AAAAGAAGAAAA	64957	TCCTTTCCCC	43242
	AGAAGGAGGAA	18255	AAAAGGAAAAA	65025	CTTCTTTTCTTC	43956
	AGAAAAAAAAGGA	18588	AAAAAAGAAAA	65076	TTCTTCTCTCT	44296
	AAGAAGAGAG	18759	AAAAAGAAGAAAA	65233	CTTCTCCCCC	44570
	GGAAAGAGAGGA	18821	AAGAAAAAGG	65849	TTTTCCCCTT	44724
	GGAAAAGGAGAA GAGGAGAAGG	19207 19577	AAGGGAGAAA AAAAAAAAAAGAAAAAAAA-	66763 67095	CTTTCTTCTTT TCTTTCCTTT	46199 46488
	GAAAGAAGAA	20278	-GGGGGGGGGG	67095	TTTTCTTTTT	47001
	AGGGAGAGAGGGAA	20577	30300330000		CTCCCTCCCC	47019
	GGGGAAGGGGG	20611	TCTCCCTCTC	10	CTCTTTTCT	47335
	AAAAGGAAAAAG	21142	TTCTTTTCTT	1008	TTCTCTTTCT	48093
	GGGGAAAGAAGGAG	21360	CCCTTTTCTCTCTCCC	1065	CCCTTTCTTCTCC	48841
	AGAAGGGAGAG	21834	CTCTCCCTCCC	1220	CCTCTTTCTC	48873
	GAGAAGGAAGGAGG	22166 22493	TTTTTTTTTCCTTCTTTC TTTCTCTTTTTT	1352 1488	TCTTTCCCTC TCTCTCTTTCT	49582
	GGGAGAGAGA AAGGAAGGGG	27083	CTTCTTTCCTTT	1737	TTCCTTCCTTCT	49889 50010
	AAGGAGGGGAAG	29293	CCCCTTCTCT	5726	CTTTTTTTTTTTTTTTCT	50948
	AGAGGGAAAG	29880	TTCCTCTTTCTC	6988	CCTTTTCCTTTTT	51371
	GAGGAAGGAGAA	32609	TCCTCTTTTCTT	7645	TTTCTCTTCC	51817
	AAAAAAAAAAAGAGAGA	32708	TTCTTTTTCCCC	7974	TTCCTCCCTC	52556
	AGAGAAAAA	33304	CTTCCTTTTT TTTCTCTCTCT	9845 10356	CTTTCTTCCCT	52903
	AAAGAAAAAA AAGAAAAAAA	33352 33363	TTTTCCCTCCTT	10356	TCTCTTCTCTT TCTCTTTTTTCCTCTTTTTTTT-	53608 53620
	GGGAGAAGAAA	34182	TTCTCCCCTTC	11806	-CCTTCCCTTCCCCTCTCTTC	33020
	AAAGGGAAGAA	34200	TTTTTTTTTTTTCTCC	12068	TTTCTTTTCTCTCTCTTCTCT-	53663
	GGAGGAGAAA	34622	CTCCTTTTTTTTTTTCT	12750	-TCTTTCCTCTCTTCCCTT-	
	AAGGGAGGAAGGA	34663	TCCTTCCCCT	13002	-CCCTTTCTCTTTCTCTTC-	
	GAGAAAAGAGAGG	35201	TTCCCCTCCCT TTTTTTTTTTTTTTTTTTTTT-	13047	CCTCTCTCCTCTCCCCTC- CTTTTTTCTCCTCTCCCCTCTCC	
	GGAAGAAGA GAGGAAGGGG	36338 36451	-TTTTTT	13076	TTTTTCTTCTTCTCCTCC	53778
	GAAGAAAAAG	36467	TCCCTCCCTC	13439	TCCTCTCTCTTCCCCTCTTCCTTCC-	
	AAGGAGGAGA	36764	TTTCTTTCCTTC	13737	-TTCCTTTCTCCCCTCTTTCCCT	
	AGGAAGAGA	37229	CTCCTTTTTCCC	14607	TCCTTCCTTTT	53867
	GAAGAAAGAGAAAAAA	37340	CTCTTTTCCT	15331	TTCTTTCTTT	54088
	GGGAGAAGAA AAAGGGAAGAA	39118	CCTCCCCTTCCT TTTTTTTTTTTTTTTTTTTT	16997 17680	CTTTTCTCTTTTT	55307
	GGAGGAGAA	39136 39558	CTCCCTTCCC	18717	TTTTTCCTTCCTC	55358 55445
	AAGGGAGGAAGGA	39599	TTTCCTTTCCCT	19085	TCTTTCTCTCCC	55493
	GAGAAAAGAGAGG	40137	CCCTCCTTCT	21020	CCCCTCCCTTC	55507
	AAAAGAGAGG	40573	TCCTTCTTTCC	22881	TTTTTCCTTCTCT	55520
	GGGAAGAAGA	41242	TTTCCTTTCTTTT	23319	CCTCTTCTCC	56170
	GAAGGGAAAG AAGGGAGAGA	41367	TTCCCTTTTCTCC	23463 23756	TCTTTCTTCCTCCTTCCTTT	56787
	AAGGAAGAA AGGAAGAAA	41542 42003	TTTTCTCCTCT	23756	CTTCCTCCTCTT TTTCCTTTCT	56867 57358
	GAAGAAGGAGAAAAAA	42118	TTCTTTTTTTT	24273	TTTTTTTCT	57384
	AAGGAAGGAG	43170	CTTTCTCTTT	24793	TTCCTTTCTCC	57912
	AAGGGAAAGG	43540	TTTTTTTTTTT	25281	TTTTTCTTTCTC	58505
	GAGAGAAAG	43712	TTCTCTCTTTCTCT	25358	TCTCTTTTTT	59493
	AAAAAAAAAAAAAAAAAAAAA	45103	CTTCTCTCCTCTTTTCTT	25562	CCTTTTCCCCTCCT	61273
	-AAGAAAGAAAGAAAAAAAAAG GGAGGGGAAGGAAG	45421	TTCTCCTCTT TTCCCTTTCTTTT	25687 25707	TTTTTTTTCTTTTCTT TTTTCTTTCCCCTTCTTTTCT	61661 62708
	AGAGAGGAGAAG	45649	CTTTCCTTTT	25707 25827	CTTTCTTTTTTTTTCTCC	62884
	GAAAGAGGGA	45882	TCCCTCTCCT	26043	CTTTCTTCTTTT	63196
	AAAAAGAGGA	46594	TTCCCCTCCCT	26090	TCTCTTTCTTTC	63250
	AAAAAAAA	46781	TTCTTTCTCC	27156	TCTTCCTCCC	63521
	AAGAGAAGGA GGGGAGAAGAG	46836 47245	CTTCCTCTCTTCCT TTTCTTTCTCTT	27861 27891	CCTTTCCCCT	64166 64310
	AAGAAAAGAGAGAA	47457	TTTCTTTCTTTCTC	29350	TCCTCTCCC	64726
	AGGAAGGGGAAA	47504	TTCTTTTTCTTT	29442	TTTTCCCCTTCCC	66162
_	· · · · · · · · · · · · · · · · · · ·			1.1		

^a Starting bases for the genes of the region are the following: 19559 (ϵ gene); 34549 (γ_G gene); 39485 (γ_A gene); 54482 (δ gene); 62239 (β gene).

broken down for the individual gene regions.

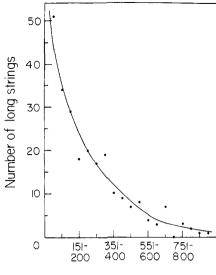
To see if a bias in favor of long strings of purine or pyrimidine residues existed in the DNA of other eukaryotic species, 10 other genes were analyzed, 2 each from mouse, rabbit,

chicken, Xenopus laevis, and Drosophila melanogaster, and the results are also shown in Table III. The higher organisms, mouse, rabbit, and chicken, show a bias of about the same magnitude as is found in human DNA. Xenopus and Dro-

Table III: Expected and Observed Number of Strings Consisting of 10 or More Contiguous Purine or Pyrimidine Residues

file name	expected no. of strings	obsd no. of strings	ratio (obsd/ expected)
HUMHBB	66	269	4.1
HUMFIXG	38	146	3.8
HUMHBA4	14	64	4.6
HUMNGFB	12	52	4.3
HUMTBB5	9	46	5.1
HUMPOMC	9	36	4.0
HUMRASH	7	44	6.3
MUSGKAL1	10	45	4.5
MUSMHAB3	10	41	4.1
RABIGKCA	6	24	4.0
RABUG	4	26	6.5
CHKOVAL	10	40	4.0
CHKY	9	46	5.1
XENHBBI	3	5	1.7
XENHBBC	2	5	2.5
DROGART	10	4	0.4
DROHSP7D1	5	14	2.8
LAMBDA	48	60	1.3
T7	40	33	0.8

Table IV: Sequence Composition of the 269 Strings Consisting of 10 or More Contiguous Purine or Pyrimidine Residues in the β -Globin Region^a


	base composition							
puri	62% A		38% G					
pyrii	62% T		38% C					
	expected dinucleotide frequence				encies			
purine	AA	AG	GA	GG	5'-A	5'-G	3'-A	3'-G
strings	1.01	0.98	0.98	1.01	0.98	1.04	0.97	1.04
pyrimidine	TT	CT	TC	CC	5'-T	5'-C	3'-T	3'-C
strings	1.03	0.96	0.97	1.04	1.00	1.00	0.96	1.07

^oNumber of strings containing 10 or more contiguous, identical bases: A + T, 12; G + C, 1.

sophila have a smaller frequency of occurrence of oligopurine strings. This may be due to problems in sampling, however. Reported sequences for lower organisms in general tend to be short and to consist mainly of coding sequences. Thus, the Xenopus files reported here may be too small to get an accurate indication of oligopurine string frequency. The DROGART file consists almost entirely of coding sequences, which may account for its low frequency of oligopurine strings. The Drosophila heat-shock sequence is less than 50% coding sequences and has a greater than expected occurrence of oligopurine strings.

An analysis of the sequences of the strings of the β -globin region is shown in Table IV. The 269 strings are 62% A + T and 38% G + C, compared to 61% A + T and 39% G + C for the β -globin region as a whole. The frequency of appearance of purine or pyrimidine dinucleotides in the tracts is very close to what is expected for random events. The 5' and 3' ends of the strings also show no preference for A or G in purine strings or T or C in pyrimidine strings. There are only 12 runs of contiguous A's or T's that are 10 residues in length or greater out of 269 strings. Besides 1 run of 12 G's in a longer run of 31 purines (start site = 67 095), there are no occurrences of stretches of more than 5 G's or C's in a row. There are only 3 strings of alternating -(AG)- or -(TC)- with a length of 10 residues or greater (1 of 10 base pairs and 2 of 14 base pairs). Thus, the bias in the regions examined appears to be for runs of purines or pyrimidines without regard to type or sequence.

In order to determine if there is any strong periodicity to the placement of the strings of the β -globin region along the

Distance (base pairs)

FIGURE 3: Number of strings of 10 or more contiguous purines or pyrimidines of the human β -globin region versus separation in base pairs from the nearest-neighbor string. The distance in base pairs between nearest neighbors was recorded for all 269 strings of the β -globin region. The number of strings with nearest neighbors falling in 50 base pair intervals (e.g., 0-50, 51-100, 101-150, etc.) were counted and plotted.

Table V: Site of Occurrence of Strings of the β -Globin Region as a Function of Length

	site of occurrence						
length of string	flanks (23 153 bp)	intergenic (36 901 bp)	introns (4969 bp)	exons (2 205 bp)			
10	24	57	7	4			
11	15	32	2	0			
12	17	18	4	0			
13	7	15	4	0			
14	3	10	3	0			
15	4	7	0	0			
>15	5	27	4	0			

DNA strand, the distance between nearest-neighbor strings was plotted in Figure 3 versus the frequency of occurrence. Again, the curve in the figure is not drawn to fit the data but is a calculated distribution for random placement of 269 elements on a line 67 256 units in length. The data fit the curve fairly closely, indicating that if there is a nonrandom location of strings it is not strongly periodic.

Table V shows the number of strings 10 residues or greater in the β -globin gene region broken down into flanking regions, intergenic region (the region contains 5 expressed genes: ϵ , γ_A , γ_G , δ , and β), coding regions, and introns. Most of the strings occur in the flanking and introperations but these are also the largest areas of the gene region. Only 4 strings occur in coding regions, and all of those were strings of 10, none longer. There are 8 occurrences of very long strings, 25 or greater in length, with no interruptions, another 3 that have interruptions of 1 base pair, and one "monster" region 170 pyrimidines in length (Poncz et al., 1980) with two single-base interruptions. Of these very long strings, 11 are in intergenic or flanking regions, 1 is in an intron (the second intron of the δ gene), and there are none in coding regions.

DISCUSSION

Characteristics of Oligopurine Strings. As seen in Figure 2A, the DNA sequence of the human β -globin region has a clear bias in favor of long strings of purines or pyrimidines. This bias is also found in the six other human genes that were

examined. Because Figure 2 uses a log scale, it is more difficult to appreciate that the bias increases as the length of the string increases, from a factor of about 3-fold greater than random for strings of 10 in a row to 10-fold for strings of 15, with an average of 4-fold greater than random for all strings of 10 or greater in length. This means that there is 1 string of 10 or greater about every 250 base pairs for a total of about 5% of the DNA examined.

The mouse, rabbit, and chicken genes that were examined (Table III) also had a strong sequence bias in favor of long strings of contiguous purine or pyrimidine residues, similar to human DNA. Although the X. laevis and D. melanogaster sequences showed a lower frequency of occurrence of oligopurine strings (Table III), it is difficult to determine if this is an accurate result or if it is due to the limited sequence information available for these organisms. It appears from the data presented here that the sequence bias may be a general phenomenon for higher eukaryotic organisms, but more data must be gathered before a conclusion can be reached concerning lower eukaryotes.

The strings of contiguous purine or pyrimidine residues found in the β -globin region have no apparent sequence preference. There is only a small number of strings with simple repetitive sequences longer than 10 base pairs: 12 strings of contiguous dA or dT residues, 1 of contiguous dG residues, and 3 of alternating -(AG)- or -(TC)- residues out of a total of 269 strings for the region. Table IV shows that the frequency of occurrence of purine or pyrimidine nearest neighbors is very close to that expected for random occurrence of either purine or pyrimidine. Furthermore, the frequency of occurrence of trinucleotide sequences in the strings is also very close to that expected for random mixing (data not shown). Therefore, I emphasize that the sequence bias in the human β -globin gene appears to be for strings of contiguous purine or pyrimidine residues without regard to type or sequence. This is an interesting result because it seems to preclude any simple explanation for the occurrence of the bias, such as unequal crossover between repetitive sequences or a large number of copies of one or several interspersed, highly repetitive DNAs.

In examining over 22 kilobases of the human β -globin region by electron microscopy of self-annealed globin clones, Coggins et al. (1980) found only five repetitive DNA sequences of average length 259 base pairs, two of which contained AluI restriction sites. The consensus sequence for the Alu family of dispersed repetitive DNA (Jelinek & Schmid, 1982) does not contain a 10 base pair string of contiguous purine or pyrimidine residues. The A-rich 3'-flanking sequence of the Alu family, usually of the general form $[N(A)_n]_m$, where N represents any nucleotide, n is usually less than 20, and m is usually less than 10, however, can contain such a string. I have searched the entire 67 kilobase pair β -globin region and found 12 sequences homologous to the Alu consensus sequence. Seven of the strings listed in Table II (start site = 5903, 18187, 32 708, 45 103, 50 948, 58 580, and 67 095) occur at the 3' end of Alu sequences. Additionally, another two strings (start site = 273 and 32609) occur within Alu sequences by deviation from the consensus sequence. Since these nine strings occur in a total of \sim 3600 base pairs of Alu DNA (12 × 300 base pairs), there is an average of one string per 400 base pairs of Alu DNA, less than the β -globin region as a whole.

Alu sequences account for about 40% of the short-period dispersed repeated human DNA sequences (Jelinek & Schmid, 1982). If other short-period repetitive sequences contributed a proportional number of oligopurine strings to the region, then

a total of ~ 23 strings would be contained in the repetitive sequences. Thus, there are not enough repetitive sequences in the β -globin region to account for more than a small percentage of the 269 strings.

There is no readily apparent preferential placement of strings. Figure 3 shows that, to the limits of our ability to detect, the placement of strings fits closely to that expected for random occurrence. Long strings are seen to occur both in introns and in intergenic regions (Table V). No very long strings have been seen to occur in coding regions. In the β -globin region, only 4 strings of 10 occur in coding sequences. In 2 of these, the amino acid sequence (-Glu-Glu-Lys-Ala-) requires codons having 10 contiguous purines, and in the other 2 strings, purines are required in 8 of 10 nucleotide residues to give the observed amino acid sequence (-Gly-Gly-Gly-Glu-Thr-).

Possible Effects of the Observed Sequence Bias. It seems apparent from the work of Crothers' laboratory (Wu & Crothers, 1984; Koo et al., 1986) that sequences of four or more contiguous dA residues are in an altered conformation, as shown by their ability to cause bending of DNA fragments when the dA strings are phased every 10 base pairs. The ability of such strings to cause bending of DNA, however, is only a single effect of their occurrence in an altered conformation. The bias reported here in favor of long strings of purine or pyrimidine residues in the human β -globin region may be an exploitation of an altered structure of the strings to exert other effects.

What might be the effect of the bias in favor of long strings of purine or pyrimidine residues in the human β -globin region, and perhaps throughout many eukaryotic genomes? One possibility is that, since the bacteriophages λ and T7 do not show such a bias, the strings might be designed to affect nucleosome stability or placement. The frequency of occurrence of strings of purines 10 or more in length, about 1 every 250 base pairs for a total of $\sim 5\%$ of the DNA that was surveyed, is great enough to conceivably have a general effect on the chromatin structure of the entire region, not just on specialized elements such as promoter sites.

But how strong of an effect on nucleosome structure would oligopurine strings of ~ 10 base pairs have? There are examples of naturally occurring DNAs where nucleosome formation is known not to occur in vivo on a region containing oligopurine strings. A nuclease-sensitive region near the 5' end of the chicken β -globin gene that was shown to be nucleosome free (McGhee et al., 1981) contains 4 oligopurine strings in a 200 base pair region, including a run of 18 contiguous guanosines, and a string of 32 purines with 1 interruption occurs in a region of the yeast TRP1ARS1 plasmid (nucleotides 10-43) that does not have a nucleosomal structure in vivo (Thoma et al., 1984). It is apparent, however, that nucleosomes can form over oligopurine strings, both in vitro and in vivo. A Drosophila melanogaster simple satellite DNA consisting of the repeating sequence -(AAGAG)- was seen to be packaged into nucleosomes in vivo (Levinger, 1985), and one clone of a number of chicken nucleosomal DNA fragments was seen to contain a long stretch of alternating -(AG)-(Satchwell et al., 1986). Additionally, we have successfully reconstituted the synthetic polypurine poly[d(AG)] poly[d-(TC)] using chicken histones by the direct mixing procedure (Jayasena and Behe, unpublished observations).

Satchwell et al. (1986) have analyzed the DNA sequences of 177 cloned nucleosomal fragments and reported that, while oligo(dA) strings did occur in all positions of nucleosomal DNA on various fragments, there was a strong preference of strings containing six or more contiguous adenosine residues

to be placed toward the ends of the fragment, avoiding the central dyad region. It seems likely that a similar result will be found for other long oligopurine strings: that although such strings can be packaged into nucleosomes if there is a sufficient driving force, they are less stable in a nucleosomal structure than other sequences.

Poljak and Gralla (1987) have recently performed competitive reconstitution of SV40 restriction fragments. SV40 contains one 15 and one 17 base pair oligopurine string, but the fragments containing the long strings reconstituted normally even though several other fragments did not. However, the choice of restriction enzymes leaves one string on the end of a 215 base pair fragment and the other string in the middle of a 610 base pair fragment so that it is possible for the strings to avoid being packaged into a nucleosome forming on the respective restriction fragments. To determine the effect of oligopurine strings on nucleosome formation, it will ultimately be necessary to quantitatively measure their affinity for nucleosome formation in competition with other DNA, and to determine the affinity as a function of the position of the oligopurine sequence along the nucleosome.

It must also be emphasized that, while oligopurine strings may eventually be shown to be important factors in the determination of nucleosome placement or stability, there are other factors that influence the positioning of nucleosomes. For example, several groups have demonstrated the precise alignment of a nucleosome in vitro on DNA sequences that have no long oligopurine strings (Simpson & Stafford, 1983; Ramsay et al., 1984; Nobile et al., 1986), and Blasquez et al. (1986) have shown the importance of protein factors in determining the average nucleosomal repeat length of the SV40 minichromosome.

Although an effect on nucleosome stability springs quickly to mind, the overabundant oligopurine strings of human DNA may have another role or roles. It is possible, for example, to imagine an effect of such elements on the higher order structure of chromatin or on the folding of chromatin into chromosomes during metaphase. Whatever the role of overabundant oligopurine strings in vivo, it is clear that in future work on the structure and function of eukaryotic DNA the ramifications of the sequence bias in favor of long strings of contiguous purine or pyrimidine residues will have to be kept in mind.

REFERENCES

Blasquez, V., Stein, A., Ambrose, C., & Bina, M. (1986) J. Mol. Biol. 191, 97-106.

Coggins, L. W., Grindlay, G. J., Vass, J. K., Slater, A. A.,

Montague, P., Stinson, M. A., & Paul, J. (1980) Nucleic Acids Res. 8, 3319-3333.

Hogan, M., LeGrange, J., & Austin, B. (1983) Nature (London) 304, 752-754.

Jelinek, W. R., & Schmid, C. W. (1982) Annu. Rev. Biochem. 51, 813-844.

Koo, H. S., Wu, H. M., & Crothers, D. M. (1986) Nature (London) 320, 501-506.

Kunkel, G. R., & Martinson, H. G. (1981) *Nucleic Acids Res.* 9, 6869-6888.

Leslie, A. G. W., Arnott, S., Chandrasekaran, R., & Ratliff, R. L. (1980) J. Mol. Biol. 143, 49-72.

Levinger, L. (1985) J. Biol. Chem. 260, 11799-11804.

Lilley, D. M. J. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6468-6472.

McGhee, J. D., & Felsenfeld, G. (1980) Annu. Rev. Biochem. 49, 1115-1156.

McGhee, J. D., Wood, W. I., Dolan, M., Engel, J. D., & Felsenfeld, G. (1981) Cell (Cambridge, Mass.) 27, 45-55.

Nobile, C., Nickol, J., & Martin, R. G. (1986) Mol. Cell. Biol. 6, 2916-2922.

Peck, L. J., & Wang, J. C. (1981) Nature (London) 292, 375-378.

Poljak, L. G., & Gralla, J. D. (1987) Biochemistry 26, 295-303.

Poncz, M., Schwartz, E., Ballantine, M., & Surrey, S. (1980) J. Biol. Chem. 258, 11599-11609.

Pustell, J., & Kafatos, F. C. (1982a) *Nucleic Acids Res.* 10, 51-59.

Pustell, J., & Kafatos, F. C. (1982b) Nucleic Acids Res. 10, 4765-4782.

Pustell, J., & Kafatos, F. C. (1984) Nucleic Acids Res. 12, 643-655.

Ramsay, N., Felsenfeld, G., Rushton, B. M., & McGhee, J. D. (1984) *EMBO J. 3*, 2605-2611.

Rhodes, D., & Klug, A. (1981) Nature (London) 292, 378-380.

Satchwell, S. C., Drew, H. R., & Travers, A. A. (1986) J. *Mol. Biol.* 191, 659-675.

Simpson, R. T., & Stafford, D. W. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 51-55.

Thoma, F., Bergman, L. W., & Simpson, R. T. (1984) J. Mol. Biol. 177, 715-733.

Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J.
L., van Boom, J. H., van der Marel, G., & Rich, A. (1979)
Nature (London) 282, 680-686.

Wu, H. M., & Crothers, D. M. (1984) Nature (London) 308, 509-513.